Skip to main content



If you are not already using ClearML, see Getting Started for setup instructions.

Matplotlib is a Python library for data visualization. ClearML automatically captures plots and images created with matplotlib.

All you have to do is add two lines of code to your script:

from clearml import Task

task = Task.init(task_name="<task_name>", project_name="<project_name>")

This will create a ClearML Task that captures:

  • Git details
  • Source code and uncommitted changes
  • Installed packages
  • Matplotlib visualizations
  • And more

View captured Matplotlib plots and images in the WebApp, in the experiment's Plots and Debug Samples tabs respectively.

Experiment plots

Automatic Logging Control

By default, when ClearML is integrated into your script, it captures all of your matplotlib visualizations. But, you may want to have more control over what your experiment logs.

To control a task's framework logging, use the auto_connect_frameworks parameter of Task.init(). Completely disable all automatic logging by setting the parameter to False. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs.

For example:

'matplotlib': False, 'tensorflow': False, 'tensorboard': False, 'pytorch': True,
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'catboost': True

Manual Logging

To augment its automatic logging, ClearML also provides an explicit logging interface.

Use Logger.report_matplotlib_figure() to explicitly log a matplotlib figure, and specify its title and series names, and iteration number:

logger = task.get_logger()

area = (40 * np.random.rand(N))**2
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
logger.report_matplotlib_figure(title="My Plot Title", series="My Plot Series", iteration=10, figure=plt)

The logged figure is displayed in the experiment's Plots tab.

Experiment Matplotlib plots

Matplotlib figures can be logged as images by passing report_image=True to Logger.report_matplotlib_figure(). View the images in the experiment's DEBUG SAMPLES tab.

Experiment debug sample

See Manual Matplotlib Reporting example.