Skip to main content

TensorBoardX with PyTorch

The example demonstrates the integration of ClearML into code that uses PyTorch and TensorBoardX.

The script does the following:

  • Trains a simple deep neural network on the PyTorch built-in MNIST dataset
  • Creates an experiment named pytorch with tensorboardX in the examples project
  • ClearML automatically captures scalars and text logged using the TensorBoardX SummaryWriter object, and the model created by PyTorch


The loss and accuracy metric scalar plots appear in the experiment's page in the ClearML web UI, under SCALARS. The also includes resource utilization plots, which are titled :monitor: machine.



ClearML automatically logs command line options defined with argparse. They appear in CONFIGURATION > HYPERPARAMETERS > Args.



Text printed to the console for training progress, as well as all other console output, appear in CONSOLE.



Models created by the experiment appear in the experiment's ARTIFACTS tab. ClearML automatically logs and tracks models and any snapshots created using PyTorch.


Clicking on the model's name takes you to the model's page, where you can view the model's details and access the model.