PyTorch TensorBoardX
The pytorch_tensorboardX.py example demonstrates the integration of ClearML into code that uses PyTorch and TensorBoardX.
The example does the following:
- Trains a simple deep neural network on the PyTorch built-in MNIST dataset.
- Creates an experiment named
pytorch with tensorboardX
in theexamples
project. - ClearML automatically captures scalars and text logged using the TensorBoardX
SummaryWriter
object, and the model created by PyTorch.
Scalars
The loss and accuracy metric scalar plots, along with the resource utilization plots, which are titled :monitor: machine, appear in the experiment's page in the web UI, under SCALARS.
Hyperparameters
ClearML automatically logs command line options defined with argparse
. They appear in CONFIGURATION >
HYPERPARAMETERS > Args.
Log
Text printed to the console for training progress, as well as all other console output, appear in CONSOLE.
Artifacts
Models created by the experiment appear in the experiment’s ARTIFACTS tab. ClearML automatically logs and tracks models and any snapshots created using PyTorch.
Clicking on the model name takes you to the model’s page, where you can view the model’s details and access the model.